RAS BiologyОнтогенез Russian Journal of Developmental Biology

  • ISSN (Print) 0475-1450
  • ISSN (Online) 3034-6266

Possibility of Human Embryo Genome Editing Continues to be Debated

PII
S0475145025020021-1
DOI
10.31857/S0475145025020021
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 56 / Issue number 2
Pages
86-92
Abstract
In 2021, the International Society for Stem Cell Research (ISSCR) cancelled the famous “Rule of 14 days” that has been regulating research on human embryos. This led to the emergence of novel controversial problems in bioethics, which are related to prospects of human genome editing in embryo. Theoretically, one can treat more than ten thousand inherited diseases with the use of gene editing techniques. Practically, these techniques have already been applied for treating a number of adults’ diseases. However, therapy based on gene editing technologies did not always lead to positive effects. Moreover, one may ask, whether these techniques can be used for gene editing of human embryos and gametes so that healthy children would be born that would have hereditary diseases otherwise. In this brief communication, we consider arguments “in favour” and “against”. We conclude that risks overweigh the potential good at this stage of gene editing techniques development.
Keywords
редактирование генома человека CRISPR биоэтика
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Anzalone A.V., Gao X.D., Podracky C.J. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing // Nat Biotechnol. 2022. V. 40. P. 731-740. https://doi.org/10.1038/s41587-021-01133-w
  2. 2. Arjmand B., Larijani B., Hosseini M.S. et al. The horizon of gene therapy in modern medicine: advances and challenges // Adv. Exp. Med. Biol. 2020. V. 1247. P. 33-64. https://doi.org/10.1007/5584_2019_463
  3. 3. Balon K., Sheriff A., Jacków J. et al. Targeting cancer with CRISPR/Cas9-based therapy // Int. J. Mol. Sci. 2022. V. 23. Art. 573. https://doi.org/10.3390/ijms23010573
  4. 4. Birney E. A society-wide conversation is needed about germline genome editing using CRISPR // Nat. Med. 2024. V. 30. P 30-32. https://doi.org/10.1038/s41591-023-02681-1
  5. 5. De Graeff N., De Proost L., Munsie M. ‘Ceci n’est pas un embryon?’ The ethics of human embryo model research // Nat. Methods. 2023. V. 20. P. 1863-1867. https://doi.org/10.1038/s41592-023-02066-9
  6. 6. Doudna J.A., Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 // Science. 2014. V. 346 (6213). Art. 1258096. https://doi.org/10.1126/science.1258096
  7. 7. Doudna J.A., Sternberg S.H. A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution. San Francisco: Mariner, 2017. FDA (Federal Drug Association). Casgevy approval. 2024. URL: https://www.fda.gov/vaccines-blood-biologics/casgevy
  8. 8. Foreman A.L., Liddell K., Franklin S. et al. Human embryo models: the importance of national policy and governance review // Curr. Op. Genetics Develop. 2023. V. 82. Art. 102103. https://doi.org/10.1016/j.gde.2023.102103
  9. 9. Goguen R.P., Chen M.J., Dunkley O.R.S. Gene therapy to cure HIV infection // Virologie (Montrouge). 2023. V. 27. P. 63-84. https://doi.org/10.1684/vir.2023.1024
  10. 10. Grebenshchikova E.G., Andreyuk D.S., Vasiliev A.V. et al.Russia’s stance on gene-edited humans // Nature. 2019. V. 575. P. 596. http://dx.doi.org/10.1038/ d41586-019-03617-x
  11. 11. Griciuc A., Federico A. N., Natasan J. et al. Gene therapy for Alzheimer’s disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation // Hum. Mol. Genet. 2020. V. 29. P. 2920-2935. https://doi.org/10.1093/hmg/ddaa179
  12. 12. Guo C., Ma X., Gao F. et al. Off-target effects in CRISPR/ Cas9 gene editing // Front. Bioeng. Biotechnol. 2023. V. 11. Art. 1143157. https://doi.org/10.3389/fbioe.2023.1143157
  13. 13. Harari Y.N. Homo deus: A Brief History of Tomorrow. New York: Penguin, 2017.
  14. 14. Hsu P.D., Scott D.A., Weinstein J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases // Nat. biotechnol. 2013. V. 31. P. 827-832. https://doi.org/10.1038/nbt.2647
  15. 15. Huxley A. Brave New World. London: Nobel, 2024.
  16. 16. ISSCR Guidelines. ISSCR Guidelines for Stem Cell Research and Clinical Translation. https://www.isscr.org/docs/default-source/all-iss-cr-guidelines/2021-guidelines/isscr-guidelines-for-stem-cell-research-and-clinical-translation-2021.pd-f?sfvrsn=979d58b1_4
  17. 17. Kim A., Lalonde K., Truesdell A. et al. New avenues for the treatment of Huntington’s disease // Int. J. Mol. Sci. 2021. V. 22. Art. 8363. https://doi.org/10.3390/ijms22168363
  18. 18. Kondkar A.A., Abu-Amero K.K. Leber congenital amaurosis: Current genetic basis, scope for genetic testing and personalized medicine. Exp Eye Res. 2019. V. 189. Art. 107834. https://doi.org/10.1016/j.exer.2019.107834
  19. 19. Ledford H. CRISPR gene editing in human embryos wreaks chromosomal mayhem // Nature. 2020. V. 583. P. 17-18.
  20. 20. Liu G., Lin Q., Jin S. et al. The CRISPR-Cas toolbox and gene editing technologies // Molecular Cell. 2022. V. 82. № 2. P. 333-347. https://doi.org/10.1016/j.molcel.2021.12.002
  21. 21. Matthews K.R.W., Iltis A.S., Marquez N.G. et al. Rethinking human embryo research policies // Hastings Center Rep. 2021. 2021. V. 51. P. 47-51. https://doi.org/10.1002/hast.1215
  22. 22. Pierce E.A., Aleman T.S., Jayasundera K.T. et al. Gene editing for CEP290-associated retinal degeneration // New Engl. J. Med. 2024. V. 390. P. 1972-1984. https://doi.org/10.1056/NEJMoa2309915
  23. 23. Rivron N.C., Arias A.M., Pera M.F. et al. An ethical framework for human embryology with embryo models // Cell. 2023. V. 186. P. 3548-3557. https://doi.org/10.1016/j.cell.2023.07.028
  24. 24. Sassin W., Donskikh O., Gnes A. et al. Evolutionary environments. Homo sapiens - an endangered species? Innsbruck: Studia Universitätsverlag, 2018.
  25. 25. Scholefield J., Harrison P.T. Prime editing-an update on the field // Gene Therapy. 2021. V. 28. P. 396-401. https://doi.org/10.1038/s41434-021-00263-9
  26. 26. Statement from the Organising Committee of the Third International Summit on Human Genome Editing, Royal Society. https://royalsociety.org/news/2023/03/statement-third-international-summit-human-genome-editing
  27. 27. Subbaraman N. Limit on lab-grown human embryos dropped by stem-cell body // Nature. 2021. V. 594. P. 18-19. https://doi.org/10.1038/d41586-021-01423-y
  28. 28. Thompson A.A., Walters M.C., Kwiatkowski J. et al. Gene therapy in patients with transfusion-dependent β-thalassemia // New Engl. J. Med. 2018. V. 378. P. 1479-1493. https://doi.org/10.1056/NEJMoa1705342
  29. 29. Warnock M. Report of the committee of inquiry into human ertilization and embryology. London: Her Majesty’s Stationery Office, 1984. http://www.hfea.gov.uk/docs/Warnock_Report_of_the_Committee_of_Inquiry_into_Human_Fertilisation_and_Embryology_1984.pdf
  30. 30. Zhao Z., Shang P., Mohanraju P. et al. Prime editing: advances and therapeutic applications // Trends Biotechnol. 2023. V. 41. P. 1000-1012.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library