RAS BiologyОнтогенез Russian Journal of Developmental Biology

  • ISSN (Print) 0475-1450
  • ISSN (Online) 3034-6266

What Spontaneous Floral Variations Reveal About the Regulation of Flower Development

PII
S3034626625040014-1
DOI
10.7868/S3034626625040014
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 56 / Issue number 4
Pages
131-142
Abstract
The regularities of floral development can be studied by analyzing spontaneous variation in flowers observed at both the intraspecific and within-individual levels. In the case of floral organs arranged in a whorl, their number (merism) can vary due to fluctuations in the size of the floral meristem and its proliferation rate. One source of meristic variation is the architecture of the inflorescence: flowers with different structures may belong to different branching orders, and the true terminal flower tends to exhibit lower stability. The variability of the abaxial and adaxial floral domains is unequal. For example, in the monosymmetric corolla of Leguminosae, the adaxial petal is the most stable, which aligns with its evolutionary conservatism within the family. A higher frequency of spontaneous variation in the androccium, compared to other floral whorls, is hypothesized to follow the general biological rule that later-developing structures tend to be more variable. Correlations among the number of organs in different floral whorls can help identify the principles of floral patterning. In some taxa, the position of organs in each whorl is influenced by the position of the preceding whorl (acropetal patterning). In other lineages, the arrangement of stamens is influenced by the gynoccium (basipetal patterning of the androccium). The inner androccial whorl can be patterned under the influence of the gynoccium, whereas the number and position of outer stamens are determined by the perianth. In cases of spontaneous floral fluctuation, whorls that are coordinated in terms of patterning exhibit a higher correlation in their merism.
Keywords
актиноморфия меристические изменения мерность зитоморфия разметка симметрия цветка флуктуационная изменчивость эволюция
Date of publication
11.06.2025
Year of publication
2025
Number of purchasers
0
Views
81

References

  1. 1. Берг Р.Л. Стандартизирующий отбор в эволюции цветка // Бот. журн. 1956. Т. 41. № 3. С. 318–334.
  2. 2. Непомнящая О.А. Строение цветков и направления их эволюции у видов рода Adoxa (Adoxaceae) // Бот. журн. 1984. Т. 69. № 8. С. 1030–1039.
  3. 3. Ремизова М.В. шаг вверх, два шага вниз: порядок заложения органов цветка // Онтогенез. 2019. Т. 50. № .6. С. 407–423. https://doi.org/10.1134/S0475145019060089
  4. 4. Синюшин А.А. Эволюционная история цветка бобовых // Успехи современной биологии. 2021. Т. 141. № 1. С. 50–65. https://doi.org/10.31857/S0042132421010221
  5. 5. Скобеева В.А. изменчивость количественно-морфологических признаков гаструляции амфибий и ее морфогенетическое значение. Дисс. … канд. биол. наук. М.: МГУ, 2011. 203 с.
  6. 6. Тимонин А.К. Почему в эволюционно-морфологических построениях мы склонны замечать преимущественно редукции? // Журн. общ. биол. 1993. Т. 54. № 1. С. 104–114.
  7. 7. Тиходеев О.Н. Классификация изменчивости по факторам, определяющим фенотип: традиционные взгляды и их современная ревизия // Экологическая генетика. 2013. Т. 11. № 3. С. 79–92.
  8. 8. Хохряков А.П. Закономерности эволюции растений. Новосибирск: Наука, 1975. 202 с.
  9. 9. Черданцев В.Г. Морфогенез и эволюция. М.: Товарищество научных изданий КМК, 2003. 360 с.
  10. 10. Черданцева Е.М., Черданцев В.Г. Организация изменчивости сериально гомологичных структур и ее связь с темпами роста (на примере ротового диска личинок бурых лягушек) // Зоол. журн. 1995. Т. 74. № 4. С. 92–107.
  11. 11. Чуб В.В. Роль позиционной информации в регуляции развития органов цветка и листовых серий побегов. М.: Бином. Лаборатория знаний, 2010. 264 с.
  12. 12. Чуб В.В., Пенин А.А. Структура цветка Arabidopsis tha­liana (L.) Heynh.: разметка положения органов // Онтогенез. 2004. Т. 35. № 4. С. 280–284.
  13. 13. Чуб В.В., Юрцева О.В. Математическое моделирование формирования цветка у представителей семейства Polygonaceae // Бот. журн. 2007. Т. 92. № 1. С. 114–134.
  14. 14. Abley K., Locke J.C.W., Ottoline Leyser H.M. Developmental mechanisms underlying variable, invariant and plastic phenotypes // Ann. Bot. V. 117. № 5. P. 733–748. https://doi.org/10.1093/aob/mcw016
  15. 15. Arber A. The interpretation of the flower: A study of some aspects of morphological thought // Biol. Rev. 1937. V. 12. № 2. P. 157–184. https://doi.org/10.1111/j.1469-185X.1937.tb01227.x
  16. 16. Arnold V.I. Catastrophe theory. Heidelberg: Springer, 2003. 150 p.
  17. 17. Bateman R.M., Rudall P.J. The good, the bad, the ugly: using naturally occurring terata to distinguish the possible from the impossible in orchid floral evolution // Aliso. 2006. V. 22. № . 1. P. 481–496. https://doi.org/10.5642/aliso.20062201.38
  18. 18. Batenburg L.H., Moeliono B.M. Oligomery and vasculature in the androecium of Mollugo nudicaulis Lam. (Molluginaceae) // Acta Bot. Neerl. 1982. V. 31. № 3. P. 215–220. https://doi.org/10.1111/j.1438-8677.1982.tb01615.x
  19. 19. Beer S.S., Beer A.S., Sokoloff D.D. Flower and inflorescence development in Salicornia (Chenopodiaceae) // Feddes Repert. 2010. V. 121. № 7–8. P. 229–247. https://doi.org/10.1002/fedr.201000024
  20. 20. Bowman J.L., Moyroud E. Reflections on the ABC model of flower development // Plant Cell. 2024. V. 36. P. 1334–1357. https://doi.org/10.1093/plcell/koae044
  21. 21. Bradley D., Carpenter R., Copsey L. et al. Control of inflorescence architecture in Antirrhinum // Nature. 1996. V. 379. № 6568. P. 791–797. https://doi.org/10.1038/379791a0
  22. 22. Bull­-Hereñu K., Claßen­Bockhoff R. Open and closed inflorescences: more than simple opposites // J. Exp. Bot. 2011. V. 62. № 1. P. 79–88. https://doi.org/10.1093/jxb/erq262
  23. 23. Bull­-Hereñu K., dos Santos P., Toni J.F.G. et al. Mechanical forces in floral development // Plants. 2022. V. 11. № 5. P. 661. https://doi.org/10.3390/plants11050661
  24. 24. Burkill I.H. On some variations in the number of stamens and carpels // Bot. J. Linn. Soc. 1895. V. 31. № 214. P. 216–245. https://doi.org/10.1111/j.1095-8339.1895.tb00805.x
  25. 25. Clark S.E., Running M.P., Meyerowitz E.M. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1 // Development. 1995. V. 121. P. 2057–2067. https://doi.org/10.1242/dev.121.7.2057
  26. 26. Degtjareva G.V., Sokoloff D.D. Inflorescence morphology and flower development in Pinguicula alpina and P. vulgaris (Lentibulariaceae: Lamiales): monosymmetric flowers are always lateral and occurrence of early sympetaly // Org. Divers. Evol. 2012. V. 12. P. 99–111. https://doi.org/10.1007/s13127-012-0074-6
  27. 27. Endress P.K. Floral phyllotaxis and floral evolution // Bot. Jahrb. Syst. 1987. V. 108. № 2–3. P. 417–438.
  28. 28. Endress P.K. Symmetry in flowers: diversity and evolution // Int. J. Plant. Sci. 1999. V. 160. № S6. P. S3– S23. https://doi.org/10.1086/314211
  29. 29. Haskell G. Variation in the number of stamens in the common chickweed // J. Genet. 1949. V. 49. P. 291–301. https://doi.org/10.1007/BF02986082
  30. 30. Hsu H.C., Chen C.Y., Lee T.K. et al. Quantitative analysis of floral symmetry and tube dilation in an F2 cross of Sinningia speciosa // Sci. Hort. 2015. V. 188. P. 71–77. https://doi.org/10.1016/j.scienta.2015.03.019
  31. 31. Landrein B., Abley K., Formosa­Jordan P. et al. Plasticity and invariance of Arabidopsis inflorescence and floral shoot apical meristems in response to mineral nutrients // bioRxiv 2025.01.31.635844. https://doi.org/10.1101/2025.01.31.635844
  32. 32. Luo D., Carpenter R., Copsey L. et al. Control of organ asymmetry in flowers of Antirrhinum // Cell. 1999. V. 99. № 4. P. 367–376. https://doi.org/10.1016/s0092-8674 (00)81523-8
  33. 33. Martín-­Trillo M., Cubas P. TCP genes: a family snapshot ten year later // Tr. Plant Sci. 2010. V. 15. № 1. P. 31–39. https://doi.org/10.1016/j.tplants.2009.11.003
  34. 34. Matzke E.B. A morphologic study of the variations in Stel­laria aquatica with special reference to symmetry and sterility // Bull. Torrey Bot. Club. 1929. V. 56. № 9. P. 471–534. https://doi.org/10.2307/2485344
  35. 35. Matzke E.B. Flower variations and symmetry patterns in Stellaria media, and their underlying significance // Am. J. Bot. 1932. V. 19. № 6. P. 477–507. https://doi.org/10.2307/2436072
  36. 36. McKim S.M., Routier­Kierzkowska A.L., Monniaux M. et al. Seasonal regulation of petal number // Plant Physiol. 2017. V. 175. № 2. P. 886–903. https://doi.org/10.1104/pp.17.00563
  37. 37. Meyen S.V. Plant morphology in its nomothetical aspects // Bot. Rev. 1973. V. 39. № 3. P. 205–260. https://doi.org/10.1007/BF02860118
  38. 38. Notov A.A., Andreeva E.A. Monopodial rosette-forming Rosaceae – a model for teratological research // Int. J. Pl. Reprod. Biol. 2016. V. 8. P. 34–45.
  39. 39. Reinhardt D., Pesce E.R., Stieger P. et al. Regulation of phyllotaxis by polar auxin transport // Nature. 2003. V. 426. P. 255–260. https://doi.org/10.1038/nature02081
  40. 40. Rozhnov S.V., Mirantsev G.V. Structural aberrations in the cup in cladid crinoids from the Carboniferous of the Moscow Region // Paleontol. J. 2014. V. 48. № 12. P. 1243–1257. https://doi.org/10.1134/S0031030114120090
  41. 41. Rudall P.J., Bateman R.M. Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata // Trends Plant Sci. 2003. V. 8. № 2. P. 76–82. https://doi.org/10.1016/s1360-1385 (02)00026-2
  42. 42. Schoute J.C. On pleiomery and meiomery in the flower. In: Recueil des Travaux Botaniques Néerlandais; Société Botanique Néerlandaise: Nimègue, The Netherlands, 1932. V. 29. P. 164–226.
  43. 43. Sinjushin A.A., Karasyova T.A. Stability of floral structure in legumes (Leguminosae) with flag vs. non-flag blossom // Wulfenia. 2017. V. 24. P. 1–10.
  44. 44. Sinjushin A.A., Ploshinskaya M.E. Flower development in Lythrum salicaria L., Cuphea ignea A. DC. and C. hyssopifolia Kunth (Lythraceae): the making of monosymmetry in hexamerous flowers // Wulfenia. 2020. V. 27. P. 303–320.
  45. 45. Sinjushin A. Unequal stability of different parts in the flag blossom (Leguminosae) with notes on factors affecting variability of pentamerous pentacyclic angiosperm flowers // Plant Syst. Evol. 2023. V. 309. № 1. 1. https://doi.org/10.1007/s00606-022-01837-9
  46. 46. Sinjushin A. How carpels affect stamens: evidence from stochastic meristic changes // SSRN. 2025. https://dx.doi.org/10.2139/ssrn.5194314
  47. 47. Soule M.E. Allomeric variation. 1. The theory and some consequences // Am. Nat. 1982. V. 120. № 6. P. 751–764. https://doi.org/10.1086/284028
  48. 48. Tian X.H., Zhao L., Ren Y., Zhang X.H. Number of floral organs in Circaeaster agrestis (Circaeasteraceae) and possible homeosis among floral organs // Plant Syst. Evol. 2007. V. 265. P. 259–265. https://doi.org/10.1007/s00606-007-0524-3
  49. 49. Tikhodeev O.N., Tikhodeeva M.Yu. Variability of the flower structure in European starflower (Trientalis euro­paea L.) in natural populations // Russ. J. Ecol. V. 32. № 3. P. 225–230. https://doi.org/10.1023/A:1011370429718
  50. 50. Wang Z., Luo Y., Li X. et al. Genetic control of floral zygomorphy in pea (Pisum sativum L.) // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 30. P. 10414–10419. https://doi.org/10.1073/pnas.0803291105
  51. 51. Wolfe L.M., Krstolic J.L. Floral symmetry and its influence on variance in flower size // Am. Nat. 1999. V. 154. № 4. P. 484–488. https://doi.org/10.1086/303249
  52. 52. Worsdell W.C. The principles of plant-teratology. V. 2. London: The Ray Society, 1916. 296 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library